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1. INTRODUCTION AND NOTATION

In this paper X will always denote a real Banach space, X* its norm dual,
U, S (U*, S*) their unit balls and spheres. If V is a closed subspace of X, a
projection onto V is a continuous linear operator P: X -> V such that Py = Y
if y E V. A hyperplane in X is a subspace V of the form V = I-I (0), where
IE S*. It is easy to see that any projection P onto the hyperplane
V=J~I(O) is of the form Px=x-J(x)z, with zEJ~'(I); this projection
will be denoted by P z • We clearly have 1 ~ II PzII ~ 1 + II z II. Let I: > O. Since
:Jz,E/~'(1) with Ilz,11 < 1 +1:, we can always find a projection P with
IIPII < 2 + I: and, when X is reflexive, with IIPII ~ 2. The relative projection
constant A(V, X) of V with respect to X is defined by: A(V, X) = inf{IIPII: P
projects X onto V}; note that 1 ~ A( V, X) ~ 2; P is a minimal projection
onto V if II PII = A( V, X). Reference [4] contains a very interesting and
complete study of minimal projections and relative projection constants
when X is one of the sequence spaces co' 11.

The aim of this paper is to present some results related to the projections
onto a hyperplane and to point out the relationships among the norms of the
projections, the shape of the unit ball and the metric properties of the hyper­
planes. Section 2 contains the main result (Theorem 3): it is proved that an
upper bound for the number A( V, X) leads to the characterization of those
hyperplanes which are range of a projection with norm strictly less than 2
(Theorem 4). In Section 3 an application of the previous results gives a
substantial improvement of an inequality proved in [91 between the Jung
constant J and the projection constants Al of a Banach space (Theorem 6).
In Section 4 a new parameter F(X) of the Banach space X, depending on the
collection of all hyperplanes of X, is considered and studied. Section 5 is
devoted to a short investigation of the function p (defined below) and other
functions related to the norm of the projections onto a given hyperplane.

We list now some other definitions and notations.
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For any real a set Va = j -1 (a) (note that all the Va are isometric with
V= Vo)' For °~ a < 1 set Ca = Un Va' J(a) = -! diam Ca and

Ca is sometimes called a hypercircle, J(a) is half the diameter of the set Ca

and p(a) is the (Chebyshev) radius of Ca relative to the set Va' i.e., the
number:

p(a) = inf sup{llz - xii, Ilxll ~ l,j(x) = a}.
ZEVa

For °~ e set

E'(a) = {x E Va: sup Ilx - yll ~ p(a) + e};
YEC a

for e = 0, EO(a) = £(a) is the (possibly empty) set of the centers of Ca

relative to Va' (Note that if e >0, E'(a) is always non-empty.) Ca, p(a) and
£6(a) are studied, in a slightly different situation, in [7].

2. MAIN RESULT

Let us begin with the following:

LEMMA 1. Assume that °~ a < 1, e ~ 0.

(i) For acE Va we have c E E'(a) if and only if

jor any y E Ca'

(ii)

(iii)

jor any c E E'(a).

(iv)

IIc-yll~lIyll+p(a)-l+e

l-a~p(a)~1 +a.

llell ~ 2a +p(a) - 1 + e

Ll(a) ~p(a) ~ (1 + a)J(a).

(2.1 )

(2.2)

(2.3)

(2.4 )

Proof (i) and (ii) are essentially Theorems 2 and 3 in [81; for the sake
of completeness we give here a new proof.

(i) Let c E Va' If (2.1) holds then clearly sup{llc - YII, y E Cal ~
p(a) + e which means that c E £6(a). Assume now that c E £6(a) and that
x*- c is a point in the relative interior of Ca ; the line AC + (1 - A) x meets
the relative boundary of Cain two points c;; = Ai C + (1 - Ai) x, with II c;j II = 1.
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One of the Ai' say AI' is strictly negative. We have c - ¢I = (1 - AI)(c - x),
so (I-AI)llc-xll~p(a)+t:=p(a)-I+II¢III+t:. Since 11¢111~

Ilxll- Al Ilx - cll we get (1 - AI) Ilc - xii ~p(a) - 1 + Ilxll- Al IIx - cll so
Ilx - cll ~ Ilxll + p(a) - 1 and this last inequality holds also for points x in
the relative boundary of Ca'

(ii) For v E Va we have p(a) ~ sup{ll v - yll, y E Cal ~ II v II + 1 which
implies p(a)~I+a since inf{llvfl, vEVal=a. For cEEe(a), yECa by
(2.1) we have p(a»I-t:+llc-YII-IIYII>I-t:-IIYII. This implies
p(a) > 1 - a. (Select z such that Ilzll = 1,j(z) > I - t: and take y = azjf(z).)

(iii) (2.3) is just a consequence of (2.1).

(iv) LI(a)~p(a) is trivial. Let xECa with Ilxll= 1, veE Va with
II veil < a + t:; there exists a ..1.< 0 such that IIAx + (l - A) veil = 1. So we have
1~-A+(I-A)(a+t:); hence l-A>2j(l+a+t:). 2L1(a»llx-(Ax+
(l-A)ve)II=(I-A)llx-vell. Taking sup on x we get 2L1(a»(l-A)
p(a) > 2p(a)j(l + a + t:) which completes the proof of (2.4). I

Let us define

c=cv=sup{pv(a), O~a < 1~.

By (2.1) we have 1~cv~2. Define also yz: [0, 1)---> [O,IIPzIIl by

(2.5)

where Pz is the usual projection defined by Pzx = x - f(x) z (f(z) = 1).
Clearly we have yz<O) = 1, sup{yz(a), 0 ~ a < 11 = IIPzll; also, p(a) =
infvEva sup{llx - vii, x E Cal = infzEV, sup{llx - azll, x E Cal = infzEV,llPzl1
= infzEv , SUPa yz(a) > infz sUPa p(a) = Cv = supa infz yz(a). We cannot in
general interchange here inf sup with sup inf; i.e., in the inequalities

1~ Cv ~ A(V, X) (2.7)

it can happen that Cv < A(V, X). An example is given in Section 5. The
parameter Cv is considered also in [9] but is defined differently; in [13] a
related parameter v(V) is studied. In order to make a comparison possible we
note that, using the notations of [8, 9, 13] and the ones introduced here, we
have the equivalences p(a) = r(dja)j(dja), rsfs = p(djs), where d is a fixed
distance; see [8, 9, 13]. (This follows from the equality C I (s) = sC1/,( 1),
where Ca(s) = sUn Va') In particular, note that

640/38/4.1

Cv = m(V, X)

p~(O)=v(V)=l«V)jd

[9, Lemma, p. 421,

[13, p. 851;
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here p~(O) = lima~o+ «(p(a) - p(O»/a) = lima~o+ «(p(a) - I)/a). (The right
derivative at the origin of p exists since the ratio (p(a) - 1)/a is non­
increasing; see Section 5.) It is consequently easy to prove (see [13]) that

A(V, X) <1 + p~(O) = 1 + v(V). (2.8)

We now want to prove a lemma on projections.
Let V =j-I(O),fE S*, 0 <a < 1 and € > 0; select z,Ej-l(l) such that

Ilz,11 < 1 +€ and c~'EEa'(a). We define the projections Pz, and Q~onto V
by

Pz x=x-j(x)z", Q~x = x - j(x) c~'/a.

Set also A = {x E s: a <j(x) < l}, B = {x E s: 0 <j(x) <a}.

LEMMA 2. We have

sup IIPz,xll < 2 + €,
XEA

sup IIPz,xll < 1 + a + €,
XEB

(2.9)

sup II Q~xll <1 + (p(a) - 1)/a + €,
xEA

sup II Q~xll <2a + pea) + €,
XEB

II Q~ II <max(1 + (p(a) - 1)/a, 2a + p(a» + €. (2.10)

Proof (2.9) is trivial. Let us prove (2.10). If x E A then ax/j(x) E Ca;
therefore

II Q~xll = Ilj~) lj~xt - c~'JII·

Using (2.1) we obtain

II Q~xll <j~) lj~) Ilxll + pea) - 1 + ae J

<1 +j(x) [p(a)-l +ael.
a

If x E B, using (2.3) we obtain II Q~xll < 1 + II c~cll <2a + p(a) + e. •

Let us consider for 0 < a < 1 the function liJ defined by

(
p(a)-I)) (p(a)-I)(l-a)

liJ(a)= 1+ a -(2a+p(a))= a -2a.(2.11)
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Since pea) ~ 1 + a we have l/I(a) ~ 1 - 3a; hence l/I(a) < 0 if a> j. Also
l/I(O) = p~ (0). By (2.8) we have l/I(O) >0 if ..1.(V, X) > 1; therefore in this
case there exists a fJ E (0, j] such that l/I(fJ) = O. Recalling that c = sup p(a)
we also have l/I(a) ~ (c - 1)(1- a)/a - 2a. Assume that 1 < c < 2; then
l/I(2(c-l)/c)~(8-6c-C2)/2c and therefore l/I(2(c-I)/c)<O if c>
vT7 - 3 = 1.123.... We shall use this last fact in proving Theorem 2.

Now consider the problem: when does a projection P: X -> V exist with
II P II ~ 2? If ..1.( V, X) < 2 this is obviously the case; when ..1.( V, X) = 2 this is
still the case if X is reflexive. We shall prove a more general result.

Recall that it is said that a Banach space X admits centers if for every
bounded subset A of X the set of the (absolute) centers of A is non-empty.
Examples of such spaces are: dual (hence reflexive) spaces, L 1(P) (p a-finite)
and C(Q) (Q Hausdorff compact) but the class is wider; see [2] for new
examples and a survey of the classical existence theorems.

Let us consider V as a Banach space in itself; noting that E(a) is the set of
the centers of Ca in Va which is isometric with V, we see that E(a) is non­
empty if V admits centers.

THEOREM I. II V admits centers there exists a projection P: X -> V such
that IIPII ~ 2.

Proof Since V admits centers E(a) is non-empty for 0 ~ a < I; the
projection Q~ considered in Lemma 2 is defined also for t: = 0 by any
caEE(a) (Qax=x-cal(x)/a). Using (2.10) we get IIQall~

max(1 + (p(a) - I)/a, 2a + pea»~. Since we may assume that ..1.(V, X) > I
there exists a fJ E (0, j) such that l/I(fJ) > O. For this fJ we have II QiJ II ~
I + (P(fJ) - 1)/fJ; hence II QiJ II ~ 2 since p(fJ) ~ I + fJ· I

EXAMPLE 1. Take X = I I, V = I - 1(0), where IE S * is the element of
IOC defined by 1= (1/2, 2/3,..., (n - I )/n,... ). We have ..1.( V, X) = 2 (see 14,
Corollary, p. 224 D. On the other hand, it is easy to see that there is no norm
2 projection onto V; therefore for any P: X --t V we have IIPII > 2 (no
projection is minimal). This counterexample is due to Griinbaum 115,
p. 199]. By the preceding theorem V does not admit centers. For a similar
negative example see' 10, p. 41 ).

We now prove our main result.

THEOREM 2. Let V=I-I(O), IE S*. For every a> 0 there exists a
projection Pa: X --t V such that

IIPol1 ~ gee) + a, (2.12 )
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where c is defined by (2.5) and g: [1,2] -> [1,2] by

g(c) = I + ~ {(c - I) + V (c - I) 2 + 8(c - I) }

=1+ 8(c-l)
c2+4(c-l)

if I ~c~ VU - 3
(2.13 )

if VU - 3 < c ~ 2.

Proof By (2.10) we have for the projection Q~: II Q~ II ~ max( I +
(p(a) - I)/a, 2a + pea)) + a ~ max(1 + (c - I)/a, 2a + c) + a.

Computing the optimal value for a we find a projection Qa such that
IIQa\I~I+!{(c-I)+V(c-I)2+8(c-I)}+a.(This computation was
done in [9, Theorem 4]. We will give here a much better result when
c >Vf7 - 3.)

Set P~ = APz + (I - A) Q~. P~ is of course a projection and for 0 ~ A~ 1,
using Lemma i, we have

IIP~xll ~ A IIPz xii + (1- A)II Q~xlla

~A(2+a)+(I-A) (I+p(a~-I +a)

~ A(I + a + a) + (I - A)(2a + pea) + a)

hence we obtain

if xEA

if xEB

II P 111 ~ max (2A+ (I-A) a+p~)-I , (I +a)A+(I-A)(2a+ p(a))+a).

When 'II(a) < 0 ('II is defined by (2.11)) a possible and optimal choice for A
in [0, I] is

A= A = _ 'II(a) = 2a
2

+ (I - a)(1 - pea))
a (I - p(a))/a + a + pea) I + a2- p(a)(1 - a) .

With such a choice we get

2a 2 2a 2
Ilpa,II~I+ 2 +a~l+ 2 +a.

A
a I+a -(I-a)p(a) l+a -(I-a)c

We have seen that 'II«2c - 2)/c) < 0 if c> JI7 - 3; therefore the choice
a = (2c - 2)/c is permitted if Vf7 - 3 < c < 2 (it must be a < I) and we
obtain a projection Ra such that I\Rall~I+8(c-I)/(c2+4(c-I))+a.

Using Qa and Ra the proof of this theorem is completed (note that when
c=2,g(c)=2and(2.12)holds). I



PROJECTIONS ONTO HYPERPLANES 325

(2.14 )

Remark. The function g has the following properties: gE CI(I, 2);
g(I) = I, g(2) = 2; c ~ g(c); g is strictly increasing and concave;
g'(1) = +00, g'(2) = 0. In the point Co = v'f7 - 3 we have g(co) =

(v'f7 - 1)/2, g'(co) = (v'f7 + 1)/2.

THEOREM 3. We have

1 ~ Cv ~ A(V, X) ~ g(cv) ~ 2,

where the function g is defined by (2.13).

Proof This is (2.7) and an obvious consequences of Theorem 2. I

THEOREM 4. We have

A(V, X) = 1 <:>cv = I<:>VaE(O,I):p(a)~ I, (2.15)

A(V,X) < 2<:>cv < 2<:>3aE (0, I):p(a) < 1 +a. (2.16)

Proof (2.15) follows from (2.14) since g(I) = 1. By (2.14) and the
properties of g it follows that Cv < 2 <:> A(V, X) < 2. Also, Cv < 2 =>
3 a: p(a) < 1 +a. Assume now that for a fJ E (0, 1) we have p(fJ) < 1 + fJ. If
If/(fJ) ~ °for a small enough the projection Q~ used in Theorem 2 has norm
II Q5II < 2 for a = fJ· If If/(fJ) <°the projection P10(see Theorem 2) has norm
IIPAII ~ 1+ fJ2 + a. I

B

3. THE PARAMETERS J AND AI

We first recall briefly some well known definitions and properties of
certain projection constants. Assume that V is a real Banach space: we say
that V E .9'.1. (A ~ 1) if for every superspace Z there is a projection P: Z -> V
such that IIPII ~ A. The (absolute) projection constant of V is A(V) =
inf{r: VE.-?,.}. We say that VEE .1. (A~ 1) if for every superspace Z with
dim Z/V = 1 there is a projection P: Z -> V such that IIPII ~ A. The constant
A1(V) is defined by A1(V) = inf{r: VEEr}'

Note that A(V) = sup {A(V, Z): V c Z} and

AI(V) = sup{A(V, Z): V c Z, dim Z/V = l}. (3.1)

It is easily seen that 1~ A1(V) ~ A(V) ~ 00, A1(V) ~ 2. We recall also the
definition of the Jung constant of V, J(V):

J(V) = sup{r(A)/L1(A), A c V, A bounded};

here r(A) is the (absolute Chebyshev) radius of A and L1(A) = 1diam(A).
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Clearly 1~ J( V) ~ 2. References on all these parameters are found in 191
where especially the relationship between J and A( is investigated.

We now give some applications of the results of Section 2.
We note that when V is a hyperplane in X, for greater precision one

should write c(V, X) instead of Cv or c and pv,x(a) instead of pv(a) or p(a).
Theorem 3 in [9] can be stated as:

THEOREM 5 (see [9]).

J(V) = sup{c(V, X), VeX, dimX/V= If.

The following is the main application, in this context, of Theorem 3.

THEOREM 6. We have

1~ J(V) ~ A1(V) ~ g(J(V)) ~ 2.

(3.2)

(3.3 )

Proof In (2.14) take dim X/V = 1, use (3.1), (3.2) and the fact that g is
strictly increasing. I

COROLLARY (see [7]).

This was first proved in [7]; see [91 for other equivalences and references.
Theorem 7 follows immediately from Theorem 6.

THEOREM 7. J(V) = 2~ AI(V) = 2.

This is a new result. This theorem has motivations in Banach space
theory; see, for example, Theorem 8. The interest in describing situations
where the lung constant and the projection constant Al have the same value
goes back to Griinbaum (see [14, 15]).

We remark that Theorem 6 is a substantial improvement of Theorem 4
(formula (4)) in [9] since the new bound A,(V) ~ g(J(V)) is now significant
for every value of J( V). This fact gives a parallel improvement of Theorem 5
in [9]. In fact we have:

THEOREM 8. Let C(Q) be the space of real continuous functions on the
compact Q with the usual sup norm. We have

J(C(Q)) < 2~ C(Q) E.9;.

Proof If J(C(Q)) < 2 by (3.3), A1(C(Q)) < 2 and this implies that
C(Q) E.~ by a theorem of Amir; see [1]. I
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This last result has been proved independently by Professor Amir who
communicated it at the 1981 meeting on Approximation Theory in
Oberwolfach.

Note that C(Q) E ,9'1 if and only if Q is stonian.

4. THE PARAMETER F

We now discuss the relevance of the previous results from a different point
of view. For a given (real) Banach space X let us define

F(X) = suplA(V, X), V is a hyperplane in Xf.

If dim X = 1, F(X) = 0 and if dim X = 2, F(X) = 1. To avoid trivialities we
assume in this section that dim X > 2.

F is a parameter of the space which satisfies 1 ~ F(X) ~ 2. If X is a
Hilbert space of course F(X) = 1. For the converse observe that the classical
Kakutani's theorem (X is Hilbert if and only if every hyperplane V in X is
range of a norm one projection) is not applicable here since the condition
A(V, X) = 1 does not imply, in general, the existence of a norm one
projection onto V; however, still the condition F(X) = 1 implies that X is a
Hilbert space. This fact was pointed out to me by Professor Amir and can be
proved using the Garkavi-Klee characterization of Hilbert spaces via
Chebyshev centers.

How to evaluate F(X)? Again Theorem 3 turns out to be useful. Define

C(X) = sUPlcv ' V is a hyperplane of X}.

We easily obtain the analog of Theorems 3 and 4, namely,

THEOREM 9. For the Banach space X we have:

1 ~ C(X) ~ F(X) ~ g(C(X)) ~ 2,

F(X) = 1~ C(X) = 1,

F(X) < 2~ C(X) < 2.

(4.1 )

(4.2)

(4.3 )

We give now, in a particular case, a more precise evaluation. Recall that
in a Banach space X the modulus of convexity of X is the function
t5x :[0,2]-+[0,1] defined by t5x(s)=infp-llx+yll/2: x,yES,
Ilx - yll ~ s}. X is uniformly convex (u.c.) if and only if t5x(s) > 0 for s > 0;
in this case t5x is invertible and we denote by 17x the inverse function. Assume
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that X is u.c., V=f- 1(O), fES*, O~a~1 and set Fa={xES:
f(x) >a} ::::> Ca' We have the following simple result:

L1(a) ~ diam Fal2 ~ I7x(l - a)/2. (4.4 )

In fact, assume that x, y ETa n S; then Ilx + yll/2 ~ 1 - 6xGlx - yll), that
is, 6Allx - yll) ~ I -llx + yll/2 ~ 1 - a; hence 6x (diam Ta) ~ 1 - a which
implies (4.4).

THEOREM 10. If V is a hyperplane in a u.c. space X we have

pv(a) ~ I7x(l - a)(I +a)/2.

Consequently

C(X) ~ sup 17x(l - a)(I +a )/2 = D(X) < 2,
a

F(X) ~ g(D(X)) < 2.

(4.5 )

(4.6)

Proof (4.5) follows from (2.4) and (4.4), then observe that the right
hand side of (4.5) does not depend on V; hence (4.6) follows immediately
using Theorem 3. I

Note that from (4.4) it follows the well known fact that in a u.c. space we
have lima~l_p(a) = lima~l_L1(a) = O.

The fact that F(X) < 2 in a u.c. space X is contained in a more general
result that we will prove in Theorem 12. We need first to recall some other
facts on Banach spaces.

A Banach space X is uniformly non-square (u.n.s.) if there exists an e > 0
such that min(llx + yll, Ilx - yll) ~ 2 - e for x, y E U. It is easily seen that if
X is u.c. then X is u.n.s.

The radial projection R: X ---> U is defined by

Rx=x

=xlllxli

if xE U

if xE U.

The radial constant k(X) of the real Banach space X is defined by

j
IIRX-RYII

k(X) = sup IIx-yll' x, Y E X, x *- y! .

It is well known that 1 ~ k(X) ~ 2; see, for example, [11] where other
properties of k are also described. Thiele proved in [18] the interesting fact
that k(X) < 2 -= X is u.n.s.
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Smith introduced in [16] the metric projection bound MPB(X) of the
space X by MPB(X) = suplllPMII, M is a proximinal subspace of Xl, where
PM(x) eM is the set of best approximations of x in M (non-empty by
definition when M is proximinal) and IIPMII = sUPIIIYII, Y E PM(x), Ilxll ~ I}.

Baronti proved in [3] that MPB(X) = k(X).
Collecting all these facts we are able to prove:

THEOREM 11. For any real Banach space X we have

F(X) ~ k(X). (4.7)

Proof Set MPB (X) = suplllPvll: dim X/V = 1, V proximinal f.
Obviously MPB (X) ~ MPB(X). (4.7) will be proved showing that F(X) ~
MPB (X). First note that U.n.s. Banach spaces are reflexive (this is a well
known result due to R. C. James) so that the condition k(X) < 2 implies
reflexivity: (4.7) is therefore trivially true if X is not reflexive since k(X) = 2.
Assume that X is reflexive and consequently that any hyperplane V is prox­
iminal in X: the (multivalued) best approximation operator P v admits always
a continuous linear selection which is therefore a projection. The inequality
F(X) ~ MPB (X) will follow from the definitions of MPB (X) and of
Jc(V, X). I

We recall now a useful result of Bohnenblust (see [5]): let V be a hyper­
plane in an n-dimensional space X. There always exists a projection
P: X -. V such that IIPII ~ 2(n - l)/n. This means that

dimX = n => F(X) ~ 2 - 2/dim X.

Combining (4.7), (4.8) and Thiele's theorem already mentioned we get:

(4.8)

THEOREM 12. We have F(X) < 2 in the following cases: X is finite
dimensional, X is uniformly non-square.

5. THE FUNCTIONS p, Yz AND L1

Let the hyperplane V=f-1(O) be fixed in X, zEf-l(I), Pz:X-. V
defined by Pzx = x - f(x) z and 0 ~ a < I. This section is devoted to a short
study of the following functions:

yz(a)=supllix-azll: xE Cal,

L1(a) =! supllix - yll: x, Y E Cal =! diam(Ca )·
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IIPzl1 = sup yz(a).
a

Denote now by rp any of the functions p, Yz' .d. We shall prove below that
a-4rp(a)/a is non-increasing in (0,1); therefore we can define rp(1)=
lima~ 1_ rp(a).

From now on we will consider rp as defined in the closed interval [0, 11.
Note that rp(O) = 1 and that when X is U.c. rp(l) = °(see (4.4». Let us prove:

THEOREM 13. For a <fJ, a,* 1, we have

rp(a) rp(a) - 1
--I-(fJ-a)<rp(fJ)-rp(a)< (fJ-a). (5.1)

-a a

Moreover the junction rp is continuous in [0, 1] and Lipschitz in every
interval [0, 1 - e1with e > 0.

Proof For s> °set C~ = Va n sUo We generalize the functions rp by
putting rpS(a) = rp(C~) (to be defined in the natural way). Note that rp I = rp. It
is easy to see that for h >°we have

(5.2)

Let T be the map x -4 a/fJ x; then Tq c C~/Il since II Tx - Tyll =
a/fJllx-yll. Using (5.2) we get a/fJrpl(fJ)<rpo:/13(a)<rpl(a)-(I-a/fJ),
that is, rp(a) ? (1 - a/fJ) +a/fJ rp(fJ) which is the right hand side of (5.1). Let
Z be the map x-4Ax+(I-A)z, AE[O,I], j(z)=1. We have
ZC1 c CH (I-A)lIzll and taking the infimum on the z with fez) = 1 also

0: Ao:+(I-Al ' ,
zc~ c C1:i'<l~i) = Cla+(I-W Since IIZx - Zyll = AIlx - yll we obtain
Arp(a) <rp(Aa + (1 - A» which gives, for fJ = Aa + (1 - A), ((1 - fJ)/(1 - a»
rp(a) <rp(fJ) which is the left hand side of (5.1).

The other conclusions of the theorem follow immediately from (5.1). I

Remarks. The right hand side of (5.1) may be written rp(a)? (1 - a/fJ) +
a/fJ rp(fJ) which in particular means that the hypograph of rp is convex with
respect to the point (0, rp(O» = (0, 1): we will say that rp is concave with
respect to 0.

We also have rp(a)/a - rp(fJ)/fJ? (fJ - a)/afJ, i.e., a -4 rp(a)/a is non­
increasing, and, more significantly, we also have

rp(a) - 1 rp(fJ) - 1 >- _~ +~ + fJ - a = °
a fJ:?' a fJ afJ '
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i.e., a ---+ (q>(a) - 1)/a = (q>(a) - q>(O»/a is non-increasing, or equivalently

q>(fJ) - q>(a) q>(a) - 1
--'---=--'---'--.:.......:....~-'----=----

fJ- a a
for a ~fJ.

We set lima~o+ «q>(a) - 1)/a) = q>~(0). Note that (q>(fJ) - 1)/fJ ~ q>~(O), i.e.,
q>(fJ)~q>~(O)fJ+ 1 and q>(fJ)-q>(a)~(fJ-a)q>~(O). We can also see from
(5.1) that a ---+ q>(a )/( 1 - a) is non-decreasing, that q> is concave with respect
to 1 if q>(1) = 0 (for example, when X is u.c.) and finally that q> is non­
increasing in the set {x E [0,1]: q>(x) ~ I f and q>(x) >1 in 10, ~I, q>(x) < I in
(~, I ], where ~ = sup {x: rp(x) > If.

For a = I the set C I = {x E S:f(x) = I} may of course be empty (for this
reason the functions rp where defined originally only in [0, I». If we assume
that C, i= 0 we can define q>1 = rp(CJ It is easy to see that q>, ~ rp(I). We
give an example where the inequality is strict.

EXAMPLE 2. Let X be 1', Vp = f; 1(0) with

fp =(~, 1/2,2/3,... , (n - I)/n,... ).
p terms

By [4, Corollary, p. 224], we have A(Vp ,X)=2; consequently by (2.16)
sup p(a) = 2 and p(l) = 2. However, one can see that p, = 0 for p = 1 and
p~ ~ 1 for p = 2; here PI = rv (C,).

p

It could be asked whether the functions q> are concave. We will show with
an example that this is not the case when q> = y=' It is, in general, difficult to
compute explicitly the functions rp; however, when X is a space of continuous
functions, this is sometimes possible using an interesting and useful formula
due to Smith and Ward [17].

THEOREM 14 (see [12, 17 D.
Let T be a topological space, Ya subset of C(T), and A a bounded subset

of C(T). Then

ry(A) = r(A) + d(Y, E(A». (5.3 )

Here r(A), r y(A) are, respectively, the absolute radius and the radius with
respect to Y of the set A, d(Y, E(A» is the distance from Y of the (non­
empty) set of the absolute centers of A.

The formula (5.3) was proved by Smith and Ward for T paracompact; the
extension to any topological T is given in [12], where also a different proof
and several applications of this formula are given. For the classical formulas
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for r(A) and E(A) in C(T) see, for example, [121. Note that for
y= V=f-I(O), A =Ca , O~a~ 1, we have

(5.4 )

EXAMPLE 3. LetX=I OO (3), V=f-I(O),f=(i,tD.Onecanseethat

By (5.4) we obtain

=~-a

=0

r(Ca ) = 1

= 2-2a

p(a)=I+a

=1- a

=2- 2a

~<a~~

for ~ <a ~ 1,

for 0 ~ a ~ ~

for ~ <a ~ 1.

for 0 ~ a ~ ~

fad < a ~ ~

for ~ <a ~ 1;

hence sup pea) = Cv = p(I/4) = 5/4.
On the other hand, we have (see [4, Theorem 2 J, also [6, Theorem 3])­

,l.,(V, X) = 9/7, so this is a case of strict inequality in (2.7). Note that in this
example the function p is concave.

We consider now a minimal projection: let z = (8/7, 4/7, 8/7) (note that
Ilzll = 8/7> 1). The projection Pz (Pzx = x - f(x)z) is minimal since IIPzII =

sUPa yz(a) = 9/7. In fact: yz(a) = sup{llx - azll, f(x) = a, IIxll ~ 1 f. Letting
x = (x p x 2 , x 3 ) we have x - az = (Xl - a8/7, X 2 - a4/7, x 3 - a8/7) with the
conditions Ixil ~ 1, 3x[ + 2x2 + 3x3 = 8a. For 0 ~ a ~ 1/4 choosing x =
(-1, 4a, 1) we get yz(a) = 1 + a8/7; for a = 1/2 choosing x = (1, -1,1) we
get yzCI/2) = 9/7. Also yz(1) = 3/7. Finally note that x - az =
I/I4(8x l - 4x2 - 6x3 , -3x[ + 12x2 - 3x3 , -6x l - 4x2 + 8x3); therefore
yzCa) ~ 9/7 and equality is possible only for x of the form ±(I, -1, -1),
±(-I, 1, -1), ±(-I, -1,1). Since 8a >0 the choice reduces to (-1,1,1),
(1, -1,1), (1,1, -1) corresponding to the values 1/4, 1/2, 1/4 for a. We
conclude that yzCa) < 9/7 if art:. {l/4, I/2}. We have shown that the function
yz cannot be concave.
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